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Abstract: In this paper, the use of initial dips using functional near-infrared spectroscopy 

(fNIRS) for brain-computer interface (BCI) is investigated. Features and window sizes for 

detecting initial dips are also discussed. Three mental tasks including mental arithmetic, 

mental counting, and puzzle solving are performed in obtaining fNIRS signals from the 

prefrontal cortex. Vector-based phase analysis method combined with a threshold circle, as a 

decision criterion, are used to detect the initial dips. Eight healthy subjects participate in 

experiment. Linear discriminant analysis is used as a classifier. To classify initial dips, five 

features (signal mean, peak value, signal slope, skewness, and kurtosis) of oxy-hemoglobin 

(HbO) and four different window sizes (0~1, 0~1.5, 0~2, and 0~2.5 sec) are examined. It is 

shown that a combination of signal mean and peak value and a time period of 0~2.5 sec 

provide the best average classification accuracy of 57.5% for three classes. To further validate 

the result, three-class classification using the conventional hemodynamic response (HR) is 

also performed, in which two features (signal mean and signal slope) and 2~7 sec window 

size have yielded the average classification accuracy of 65.9%. This reveals that fNIRS-based 

BCI using initial dip detection can reduce the command generation time from 7 sec to 2.5 sec 

while the classification accuracy is a bit sacrificed from 65.9% to 57.5% for three mental 

tasks. Further improvement can be made by using deoxy hemoglobin signals in coping with 

the slow HR problem. 

© 2016 Optical Society of America 

OCIS codes: (170.2655) Functional monitoring and imaging; (300.0300) Spectroscopy; (070.5010) Pattern 

recognition; (200.3050) Information processing. 
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1. Introduction 

The initial dip is an early small decrease of the concentration change of oxygenated 

hemoglobin (ΔHbO) on the locus of neuronal activity after the presentation of stimuli [1–12]. 

Since its first reveal [1], a number of invasive/non-invasive studies showed its occurrence 

prior to the increase of blood oxygenation [13–16]. The initial dip is closely related to the 

neuronal metabolism and is a direct indication of the generation of a neuronal command. The 

initial dip is found to be faster than the conventional hemodynamic response (HR) and 

spatially more specific [17,18]. The aim of this study is to measure the initial dips in 

association with three kinds of mental tasks from the prefrontal cortex, and classifies the tasks 

using the initial dip related features to be introduced. The three mental tasks are mental 

arithmetic (MA), mental counting (MC), and puzzle solving (PS). 

Function near-infrared spectroscopy (fNIRS) is a non-invasive method to measure the 

concentration changes of oxygenated hemoglobin (ΔHbO) and deoxygenated hemoglobin 

(ΔHbR) by emitting near-infrared light (650~1000 nm) into the brain and measuring the 

photons that passed through the brain tissues by detectors placed on the scalp with appropriate 

distances. The principle of fNIRS has been described in detail in [19–24]. In fNIRS, to the 

best of our knowledge, the first study that observed the delayed response by approximately 2 

sec (in term of initial dip) was done by Jasdzewski et al. [11]: The initial dip was found in the 

visual and motor cortex. In 2004, another study by Kato indicated that a fast oxygen response 

is followed by a neuronal activity [12]. Kato measured an active oxygen exchange in 

capillaries, which has been named to fast-oxygen response in capillary event (FORCE) 

related to the neuronal responses. Akiyama and coauthors incorporated transcranial magnetic 

stimulation (TMS) to the detection of an initial dip in the motor cortex, using NIRS imaging, 

to enhance the spatial specificity [25]: They revealed distinctive biphasic responses in the 

cortical oxygenation in the center of the primary motor cortex during the motor task, and 

observed an early response occurring within 1 to 3 sec after the task initiation. Wylie et al. 

also found the rising of HR at approximately 2 sec in the visual cortex during a contrast-

reversing checkerboard presentation [26]. Efforts related to a systematic detection of initial 

dips were result in the vector-based phase analysis method [27–29]. Yoshino and Kato 

provided an in-depth study on the classification of initial dips [27]. In their work, five types of 

initial dips were classified using the vector-based phase analysis: The dips were divided into 

canonical dips (phases I, II), hypoxic-hyperemic dips (phase III), and hypoxic-ischemic dips 

(phases IV, V) on the basis of phases in which the initial dips occur. However, in their study 

the time required for the detection of initial dip was not clear. Hong and Naseer introduced a 

threshold criterion on the phase diagram in detecting initial dips, and proposed the use of an 

auto-regressive moving average with exogenous signals (ARMAX) model to predict q-step-

ahead occurrence of such dips in the measured fNIRS signals [30]: The authors were able to 

reduce the time lag in detecting the initial dips to 0.9 sec. 

 

Fig. 1. BCI framework: Application of initial dip detection. 
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In fNIRS imaging for brain-computer interface (BCI), variation detection of 

hemodynamic responses (i.e. increase/decrease in ΔHbO/ΔHbR) is the main focus for 

neuronal-command interpretation [31]. BCI provides a communication link between the 

hardware and the brain signals by translating the brain signals into meaningful commands to 

actuate the hardware [32–35]. The main issue associated with using fNIRS signals for BCI 

applications is the inherent 2 sec time delay from the neuronal activation [11,30,36]. For this 

reason, researchers in fNIRS community used various features in 0~5, 2~7, 0~10, 0~15, 0~17, 

and 0~20 sec time windows to classify the HRs from the same or different brain regions using 

multi-class classification algorithms [37–47]. However, the use of HRs will result in time-

delayed command generations due to the delays in HRs. If the detection of initial dips from 

the same or different brain regions is plausible, a quicker generation of commands is now 

possible in the BCI framework as shown in Fig. 1. 

In this paper, we investigate the feasibility of classifying three different mental activities 

using the features associated with the initial dips measured from the prefrontal cortex. To 

detect the initial dips, the vector-based phase analysis like Kato et al. is adopted [27–29]. 

However, a new threshold circle with a radius defined by the peak value of either ΔHbO or 

ΔHbR signals during the resting state is investigated, which is in contrast with the work of 

Hong and Naseer in that max (ΔHbO
2
 + ΔHbR

2
)

1/2
 during the resting state was used [30]. For 

classifying the initial dips related to the mental tasks, five features of HbO are tested: the 

signal mean, peak magnitude (delta), signal slope, skewness, and kurtosis of the HbO signal 

during 0~1, 0~1.5, 0~2, and 0~2.5 sec windows, respectively, are investigated. Linear 

discriminant analysis (LDA) is used as a classifier for training and testing. Revealing the 

obtained result briefly, the signal mean and peak value (delta) during 0~2.5 sec window 

provided the best three-class classification accuracies of 57.5%. Also, we have investigated 

the initial dip characteristics in different brain regions: prefrontal, motor, somatosensory, and 

visual cortices. To the best of our knowledge, this is the first study investigating the 

classification of initial dips in various brain regions including the prefrontal cortex. Finally, to 

prepare the cases when initial dips are not detected, a secondary classification loop by using 

the conventional HRs has been set, see Fig. 1. In this case, as features for classification, the 

signal mean and the signal slope during the 2~7 sec window are to be used. 

2. Method 

2.1 Characteristics of initial dip 

Figure 2 depicts the characteristics of initial dip (task: 10 sec): tinit defines the time duration 

 

Fig. 2. Characteristics of the canonical initial dip. 
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when ΔHbO comes back to the baseline value after decreasing, to denotes the time instance at 

which the signal reaches its negative peak value, and δ (delta) is the (negative) peak value of 

ΔHbO at to. After the initial stage, t1 denotes the time for the HR to reach its peak magnitude, 

a1 is the peak value, and a2 is the magnitude of undershoot, see the definitions in Hong and 

Nguyen [36]. In this study, the parameters of initial dip (tinit, to, δ) are utilized for the 

comparison of initial dips from the prefrontal, motor, somatosensory, and visual cortices. 

Also, δ is used as a feature for classification. 

2.2 Subjects 

A total of 8 male subjects (mean age: 27.5 ± 4.5) participated in the experiment. The subjects 

were MS and Ph.D. students, Pusan National University. All subjects were healthy and 

normal or corrected-to-normal vision. They had no history of any neurological or visual 

disorder. A detailed description on the experimental procedure was given to all the subjects 

prior to the experiment, and a consent was taken from all the subjects before conducting the 

experiment. The experiment was conducted in accordance with the latest declaration of 

Helsinki [48]. 

2.3 Experimental paradigms 

In this study, we have conducted three experiments: prefrontal, motor/somatosensory, and 

visual (see Figs. 3 and 4). In Experiment 1, the mental arithmetic (MA), mental counting 

(MC), and a puzzle solving (PS) tasks related to the prefrontal cortex were investigated. In 

Experiment 2, the right-hand index finger tapping (RHFT) and right-hand index finger poking 

(RHFP) tasks associated with the motor and somatosensory cortices were performed. Finally, 

Experiment 3 contains checkerboard presentation activities for the visual cortex. 

 

Fig. 3. Experimental paradigms: Experiment 1 consists of mental arithmetic (MA), mental 

counting (MC), and puzzle solving (PS) tasks; Experiment 2 is composed of right-hand finger 

tapping (RHFT) and right-hand finger poking (RHFP); Experiment 3 examines checkerboard 
visualization; and a session consists of 5 trials. 
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The subjects were seated on a comfortable chair. They were instructed to relax and avoid 

body movement as much as possible. The stimuli with associated beep sounds were presented 

on a monitor screen placed in front of the subject to avoid the onset delay. The experimental 

paradigm for the three experiments is shown in Fig. 3. Experiment 1 consists of three sessions 

of the prefrontal mental tasks with a resting state period of 120 sec before each session. The 

resting period of 120 sec was used to avoid HR fluctuation as much as possible. Each session 

contains five trials of 30 sec, in which 10 sec is used for task and 20 sec is used for rest. 

Mental arithmetic (MA) task: During the MA task, the subjects were instructed to perform 

backward subtraction of a two-digit number (between 15 to 25) from a three-digit number, 

successively, by subtracting a new number from the previous answer [37,46,49,50]. A series 

of mental arithmetic tasks were shown on the monitor screen, for instance, 550 - 15 = ?, 535 - 

19 = ?, 516 – 21 = ?, etc. 

Mental counting (MC) task: The subjects were instructed to start backward counting from 

a three-digit number shown on the monitor screen during the task period [42,50–52]. 

Puzzle solving task (PS): In the PS task, four pieces of Pusan National University logo 

were presented to the participants in a random order. The subjects were instructed to 

reconstruct the Pusan National university logo by flipping and rotating the pieces by their 

thinking [50,53]. 

Experiment 2 consists of two sessions and each session has 5 trials. In the first session, the 

subjects were instructed to start right-hand index finger tapping during the task period. In the 

second session, poking on the subject’s right-hand index finger was done. In Experiment 3, 

the subjects were advised to focus on the 8 Hz checkerboard flashing on the monitor during 

the task period. It is noted that the data of Experiments 2 and 3 were used only for the 

comparison of the initial dips in the prefrontal, motor/somatosensory, and visual cortices. 

2.4 Signal acquisition and preprocessing 

The frequency domain fNIRS system (ISS Imagent, ISS Inc., USA) was used to acquire the 

brain signals from the prefrontal, motor/somatosensory, and visual cortices. The system 

utilizes near-infrared light of two wavelengths (690 nm, 830 nm) to determine the 

concentration changes of both HbO/HbR. Figure 4 shows the electrode placement for signal 

acquisition in the prefrontal, motor/somatosensory, and visual cortices, in which individual 

 

Fig. 4. Electrode configuration in the prefrontal (Exp. 1), motor/somatosensory (Exp. 2), and 

visual cortices (Exp. 3). 
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brain areas were thoroughly covered by using 8 emitters and 2 detectors. For instance, the 

detectors were placed on both sides of FPz for Experiment 1, and C3 for Experiment 2 in 

accordance to the 10-20 International System for the prefrontal and motor/somatosensory 

cortices respectively. For the visual cortex (Experiment 3), the detectors were placed near to 

O1 and O2 locations. A total of 16 channels were made using emitter-detector combination. 

The distances between emitter-detector pairs and reference points (FPz, C3, O1, O2) are 

shown in Fig. 4. In acquiring fNIRS signals, a sampling rate of 15.625 Hz was used. 

The raw intensity data of ΔHbO and ΔHbR for all the channels were obtained with the ISS 

Imagent data acquisition and analysis software (ISS-Boxy). Then, they were converted into 

ΔHbO and ΔHbR using their official software, ISS-Boxy, with extinction coefficients εHbO = 

0.95 µM
1

cm
1

, εHbR = 4.93 µM
1

cm
1

 for 690 nm wavelength and εHbO = 2.135 µM
1

cm
1

, 

εHbR = 1.791 µM
1

cm
1

 for 830 nm wavelength in the modified Beer-Lambert law (MBLL) 

[54]. The converted ΔHbO and ΔHbR are normally contaminated with physiological noises. 

To remove physiological noises related to respiration and cardiac signals, a 4th order 

Butterworth low-pass filter with a cutoff frequency of 0.15 Hz was used [23,39,45]. The low-

frequency drift from the data were then minimized by using a 4th order Butterworth high-pass 

filter with a cutoff frequency of 0.033 Hz. The cutoff frequency of the high-pass filter was 

selected as such because the longest possible time period between the onset of two 

consecutive conditions is 30 sec. In this study, a trial consists of a 10 sec task and 20 sec 

resting period, and therefore the stimulation frequency was approximately 1/30 sec = 0.033 

Hz as in [55,56]. 

2.5 Vector-based phase analysis with a threshold circle 

The detection of initial dips was done by employing the vector-based phase analysis with a 

threshold circle as a decision criterion [30], in which two independent vectors defined by 

ΔHbO and ΔHbR signals are orthogonally utilized [27–29]. Besides ΔHbO and ΔHbR, two 

other components are defined as follows. 

 
1

( ),
2

HbT HbO HbR     (1) 

 
1

( ),
2

COE HbR HbO     (2) 

where ΔHbT indicates the total hemoglobin concentration change and ΔCOE denotes the 

cerebral oxygen change. Alternatively, these two components can be obtained by rotating the 

vector coordinate plane defined by the ΔHbO and ΔHbR by 45° counterclockwise, see Fig. 5. 

Now, the magnitude and the phase of a vector, p, in this plane can be calculated as follows 

[27–30]: 

 2 2 ,p HbO HbR    (3) 

 1 1tan ( ) 45 tan ( ).
COE HbR

p
HbT HbO

  
    

 
 (4) 

The ratio of ΔCOE and ΔHbT in (4) defines the degree of oxygen exchange since ΔCOE 

represents the oxygen exchange in the blood vessels and thus representing the neuronal 

activity [28]. Using the four indices, vector-based phase analysis is divided into eight phases. 

Figure 5 shows the phase classification of vector-based phase analysis with a threshold circle. 
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Fig. 5. Vector plane with a threshold circle [27–30]. 

In Fig. 5, Phase 1 (0 < ΔHbR < ΔHbO, ΔCOE < 0 < ΔHbT) is the hyperoxia phase. It is a 

dip phase in which ΔCOE < 0. Phase 2 (0 < ΔHbO < ΔHbR, 0 < ΔCOE < ΔHbT), Phase 3 

(ΔHbO < 0 < ΔHbR, 0 < ΔHbT < ΔCOE), Phase 4 (ΔHbO < 0 < ΔHbR, ΔHbT < 0 < ΔCOE), 

and Phase 5 (ΔHbO < ΔHbR < 0, ΔHbT < 0 < ΔCOE) are hypoxic initial dip phases in which 

ΔCOE > 0. The hyperoxia non-initial dip phases are Phase 6 (ΔHbR < 0 < ΔHbO, ΔCOE < 0 

< ΔHbT), Phase 7 (ΔHbR < 0 < ΔHbO, ΔCOE < ΔHbT < 0), and Phase 8 (ΔHbR < ΔHbO < 

0, ΔHbT < ΔCOE < 0). Phases 2 to 5 indicate decreases in ΔHbO in the blood vessels as 

ΔCOE > 0 represents deoxygenation in the capillaries as a result of oxygen consumption by 

the nerve cells. On the other hand, ΔCOE < 0 indicates that the oxygen-containing red blood 

cells are being supplied by the arteries and represent the high level of oxygenation in the 

blood vessels [27,30]. 

The use of a threshold circle as a decision criteria incorporated in the vector-based phase 

analysis helps to minimize possible misidentifications of initial dips. The radius of a threshold 

circle for each channel is determined by detecting the peak value in ΔHbO or ΔHbR signal 

(i.e., max(HbO) or max(HbR)) in the final 60 sec of the initial resting period (i.e., 120 sec). 

MATLAB
TM

 function max was used to determine the peak value in ΔHbO and ΔHbR signal. 

The maximum value among them was then selected. The initial dip instance is concluded 

when the magnitude of the signal breaks out the threshold circle while its phase lies within the 

dip phases (i.e., phases 1 to 5). 

2.6 Features extraction and classification 

The channels in which initial dips were detected by the vector-based phase analysis were 

averaged for the given task. Four different time windows (i.e., 0~1, 0~1.5, 0~2, and 0~2.5 

sec) were investigated for comparison of the classification accuracies of initial dips. The 

signal mean, delta, signal slope, skeweness, and kurtosis values were computed for each 

window. For this, mean, min, polyfit, skew, and kurt functions available in MATLAB
TM

 were 

used, in which the min function was used to find the delta value. Then, the extracted features 

of each subject were normalized between 0 and 1 by the following equation [40,49]: 

 
min( )

,
max( ) min( )

y y
y

y y


 


 (5) 

where ny R  represent the original values of the features, 'y  is the rescaled values between 

0 and 1, max(y) is the maximum value, and min(y) is the minimum value. The rescaled 

features were then classified using LDA. LDA is a linear classifier that intends to find a 

separating hyperplane by maximizing the distance between the classes' means and minimizing 

the within-class variance to classify diverse classes of data [20,49]. LDA is used in various 

BCI studies due to its ease of use and fast execution time. To determine the classification 

accuracies, 5-runs of 5-fold cross-validation were used. The 5-fold cross-validation randomly 
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breaks the data into 5 equal sets and used 4 sets for training and 1 set for testing. The process 

was repeated for five times and the mean accuracy was taken. Furthermore, to measures the 

performance of the classifier, the true positive rate (TPR), true negative rate (TNR), and false 

positive rate (FPR) were calculated for three-class classification as follows [57]: 

 ,
TP

TPR
TP FN




 (6) 

 ,
TN

TNR
TN FP




 (7) 

 1 ,
FP

FPR TNR
FP TN

  


 (8) 

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false 

negative respectively. The values of TP, TN, FP, and FN were calculated from the confusion 

matrix [57]. A Matlab
TM

 function, classperf, was used to create the confusion matrix. Finally, 

the receiver operating characteristic (ROC) curve was drawn using the TPR and FPR for the 

MA, MC, and PS tasks. 

3. Results 

Figure 6 shows the phase portrait analysis of the mental arithmetic task (Trial 1) of Subject 1. 

It can be seen that the initial dips were detected in Channels 2, 4, 8, 9, 10, and 11. Table 1 

summarizes the channels in which initial dips were detected for three tasks and eight subjects. 

To further confirm whether the channels showing initial dips were really active or not, the t-

values were computed by using the MATLAB function, robustfit [39,45,58]. This function 

compares the averaged HbO of each channel with the designed HR and returns the t- and p-

values. The criteria for concluding activeness were i) t-value > critical t-value (tcrt) and ii) p-

value < 0.05. In this study, tcrt was set to 1.648, as computed from the degree of freedom of 

the data (i.e., trial period = 30 sec, the number of data points N = 30 × 15.625 = 468, N-1 = 

467) and the statistical significance level (i.e., 0.05 for one-tailed test). The t-values of the 

initial dip detected channels in the vector phase analysis were higher than tcrt. Then, the initial 

dip detected channels were averaged for each given task. Figure 7 shows the averaged HbOs 

over all 8 subjects and 5 trials, and their standard deviation for individual MA, MC and PS 

task. The shaded areas along the mean values represent their standard errors. 

First, for the conventional HRs, the three-class classification of three tasks was performed 

by using the signal mean and signal slope, as features, for 2~7 sec window, which is tabulated 

in Table 2. The average classification accuracy of 64.9% was obtained. It is noted that the 

overall classification accuracies are significantly higher than the chance level (i.e. 33.3%). 

Particularly, the classification accuracies of Subs. 1 and 8 are higher than the recommended 

classification accuracy needed for BCI (i.e., 70%). 

Second, Table 3 shows the averaged classification accuracies based upon the signals 

during the initial dip period of 0~2.5 sec window, in which two feature combinations out of 

five features (mean, slope, delta, skewness, and kurtosis) are compared. It is noted that the 

combination of signal mean and delta gives a significantly higher classification accuracy, 

57.5%, than others. It is seen that the classification accuracies of other combinations still 

show a higher value than the chance level of the three-class classification. Table 4 shows the 

individual subjects’ classification accuracies in 0~1, 0~1.5, 0~2, and 0~2.5 sec windows 

using the signal mean and the delta as features. 

From Table 4, it is seen that the 0~2.5 sec window gives the best classification accuracy 

for each subject. There is a slight difference in the accuracies of 0~2 and 0~2.5 sec windows, 

but Sub. 6 in 0~2 sec window case showed almost the chance level. However, in the case of 

0~2.5 sec window, all the classification accuracies were far higher than the chance level. 
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Particularly, Subs. 1 and 8 showed higher classification accuracy than required for BCI (i.e., 

70%), whereas those of Subs. 3 and 7 were higher than 60%. Table 5 provides a comparison 

of the classification accuracies based upon initial dip signals of 0~2.5 sec window and those 

based upon HRs of 2~7 sec window. 

 

Fig. 6. Phase portraits (from 5 to 15 sec) of mental arithmetic task (Sub. 1). 
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Table 1. List of channels in which initial dip has been detected. 

Subjects Tasks Channels  Subjects Tasks Channels 

1 

Mental arithmetic 2, 4, 8, 9, 10, 11 

 

5 

Mental arithmetic 2, 3, 4, 10, 11, 12 

Mental Counting 
2, 4, 6, 8, 10, 

11, 12 
Mental Counting 2, 4, 8, 10, 11, 12 

Puzzle solving 2, 3, 4, 8, 11 Puzzle solving 
1, 2, 3, 4, 7, 8, 10, 

11, 12, 16 

2 

Mental arithmetic 3, 4, 8, 9, 10, 11 

6 

Mental arithmetic 2, 4, 8, 10, 11 

Mental Counting 
2, 7, 9, 10, 11, 

15 
Mental Counting 4, 8, 10 

Puzzle solving 
2, 3, 4, 8, 9, 10, 

11, 12 
Puzzle solving 2, 4, 8, 10, 11, 12 

3 

Mental arithmetic 
2, 3, 4, 7, 8, 9, 

10, 11, 16 

7 

Mental arithmetic 4, 8, 10, 12, 16 

Mental Counting 
2, 3, 4, 7, 8 10, 

11, 12 
Mental Counting 4, 5, 6, 10, 11, 12 

Puzzle solving 
2, 3, 7, 8,10, 11, 

15 
Puzzle solving 2, 3, 4, 10 

4 

Mental arithmetic 2, 3, 6, 7, 10, 11 

8 

Mental arithmetic 4, 8, 10, 11, 16 

Mental Counting 
3, 5, 7, 8, 11, 

13, 15 
Mental Counting 4, 8, 10, 16 

Puzzle solving 2, 3, 4, 8, 10, 16 Puzzle solving 1, 2, 3, 4, 10, 11, 12 

 

Fig. 7. The averaged HbOs and their standard deviations for MA, MC, and PS tasks. 

Table 2. Classification accuracies of three tasks based on hemodynamic responses. 

Subjects Classification accuracies (%) (2-7 sec) 

1 86.6 

2 53.3 

3 66.6 

4 53.3 

5 40 

6 66.6 

7 66.6 

8 86.6 

Average 64.9 ± 16.2 
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Table 3. Classification accuracies of three tasks for various feature combinations. 

 (Window: 0 ~2.5 sec) 

Feature combinations 
Average classification accuracies 

(%) 

Mean, slope 51.2 ± 17.5 

Mean, skewness 54.1 ± 14.5 

Mean, kurtosis 53.1 ± 16.1 

Mean, delta 57.5 ± 14.9 

Slope, skewness 40.8 ± 16.8 

Slope, kurtosis 36.6 ± 18.5 

Slope, delta 54.1 ± 14.8 

Skewness, kurtosis 40.0 ± 16.3 

Kurtosis, delta 54.1 ± 9.7 

Skewness, delta 54.8 ± 16.6 

Table 4. Classification accuracies of three tasks for various window sizes (used features: 

mean, delta). 

Subjects 
Classification accuracies (%) 

0~1 sec 0~1.5 sec 0~2 sec 0~2.5 sec 

1 53.3 53.3 60 73.3 

2 46.6 53.3 53.3 53.3 

3 33.3 46.6 53.3 60 

4 43.3 46.6 46.6 46.6 

5 40 40 40 40 

6 33.3 33.3 33.3 40 

7 56.6 60 66.6 66.6 

8 60 73.3 76.6 80 

mean 45.8 ± 10.2 50.8 ± 12.3 53.7 ± 14.0 57.5 ± 14.9 

Table 5. Comparison between initial-dip-window and HR-window. 

Subjects 

Classification accuracies (%) 

Initial dip based 

(0~2.5 sec window) 

HR based 

(2~7 sec window) 

1 73.3 86.6 

2 53.3 53.3 

3 60 66.6 

4 46.6 53.3 

5 40 40 

6 40 66.6 

7 66.6 66.6 

8 80 86.6 

mean 57.5 ± 14.9 64.9 ± 16.2 

Figures 8 and 9 show the ROC curves for the MA, MC, and PS tasks for HRs and initial 

dips in 2~7 sec and 0~2.5 sec windows, respectively. The TPR and FPR were calculated for 

each subject using the confusion matrix. The ROC curves were then drawn for multi-class 

classification using the averaged TPR and FPR over all subjects for each task. The area under 

the curve (AUC) was calculated by trapezoidal method. The MATLAB
TM

 function trapz were 

used. For HR-based classification, the AUC were 0.80, 0.72, and 0.70 for MA, MC, and PS 

tasks, respectively. The AUC for the initial dip based classification for MA, MC, and PS tasks 

were 0.75, 0.64, and 0.60, respectively. In both cases, the LDA classifier shows the 

performance above the random guess line for all tasks. 
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Fig. 8. Receiver operating characteristic (ROC) curves for HR-based classification of 2~7 sec 

window using the averaged TPR and FPR for the MA, MC, and PS tasks over all subjects. 

3.1 Comparison of initial dips in various brain cortices 

The initial dips in the motor/somatosensory and visual cortices were also detected by using 

the vector phase analysis method with proper threshold circles. For each task, the signals that 

have depicted initial dips were averaged over trials and subjects. Figure 10 shows the 

averaged HbOs of MA, MC, PS, RHFT, RHFP, and checkerboard tasks and their standard 

deviations. 

The characteristic parameters (see Fig. 2, Section 2.1) were calculated from the averaged 

HbOs in Fig. 10. Those parameters for individual tasks are collected in Table 6. The time to 

the peak magnitude in the initial dip stage, to, is almost the same for all tasks. However, there 

is a slight difference in the duration of initial dip (tinit) among the tasks. In the somatosensory 

cortex, it is noteworthy to mention that kind of initial dips were detected in a few trials, but it 

can be said that there is no initial dip phenomenon in the somatosensory cortex (the averaging 

gives almost zero). Further investigation is needed for this issue. Finally, the initial dip 

magnitude of the RHFT task (i.e., 0.89529) was higher than any other tasks. 

4. Discussion 

In this paper, we have utilized the vector-based phase analysis method and the threshold 

circle criterion to detect the occurrence of initial dips from the prefrontal cortex during the 

MA, MC, and PS tasks. The advantage of using a threshold circle in vector-phase analyses is 

that it helps to minimize a false identification of initial dips from the fNIRS signals [30]. In 

this paper, the threshold value for each channel was set to the maximum peak value of either 

ΔHbO or ΔHbR during the resting period just ahead of the task. The use of a peak value of 

{ΔHbO, ΔHbR} instead of max(ΔHbO
2
 + ΔHbR

2
)

1/2
 during the resting state can reduce the 

radius of a threshold circle, and consequently enables an earlier detection of initial dips. 
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Fig. 9. ROC curves for the initial dip based classification in 0~2.5 sec window using the 

averaged TPR and FPR for the MA, MC, and PS tasks over all subjects. 

The novelties of this paper exist in the demonstration of the use of initial dips for BCI, 

suggestion of initial dip features (signal mean, delta), and determination of window size (2.5 

sec) for classification of three mental tasks in the prefrontal cortex, which allows a quicker 

command generation than any conventional HR-based BCI. The early fNIRS studies based 

upon HRs had to use a large window size: For instance, 0~5, 2~7, 0~10, 0~15, 0~17, and 

0~20 sec [37–47]. In this case, due to the inherent delay of 2 sec of initial dip, the 2~7 sec 

window was shown to provide the best classification performance [46]. Also, the combination 

of signal mean and signal slope in two class classification based upon HRs for various 

prefrontal tasks was shown to generate the best accuracy in classification [20,46,51,59]. In 

Fig. 10, the fNIRS signals of MA tasks were stronger than MC and PS tasks. Naturally, the 

MC tasks show weaker signals due to that they do not require heavy cognitive load. This 

finding is consistent with the previous studies [42,51]. 

For the purpose of comparing the proposed method (i.e., initial dip based classification) 

and the conventional HR-based method, we performed a similar analysis using the HR signals 

as well. Adopting the tips from the previous studies in this case, the window size was chosen 

to be 2~7 sec and the features used were signal mean and signal slope during the 2~7 sec 

period. Upon these, the average classification accuracy for MA, MC, and PS tasks was 

64.9%, see Table 5. Individual subjects' classification accuracies were all higher than the 

chance level (i.e., 33.3%). Typically, the classification accuracies of Subs. 1 and 8 were 

higher than the required classification accuracy for BCI (i.e., 70%). 

Regarding the HR based classification, the work of Power et al. for 3-class classification 

(mental arithmetic, mental singing, and rest) achieved an average classification accuracy of 

56.2% [38]. Similarly, Herf et al. reported an average ternary classification accuracy of 50.3% 

in differentiating different levels of workload from the prefrontal measurements [60]. Hong et 

al. obtained average three-class classification accuracy of 75.6% using the prefrontal and 
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Fig. 10. The averaged HbO and its standard deviation for MA, MC, PS, RHFT, RHFP, and 
checkerboard tasks. 

Table 6. Initial dip characteristic parameters of MA, MC, PS, RHFT, RHFP, and 

checkerboard tasks. 

Activity 
Initial dip peak time 

to (sec) 

Initial dip duration 

tinit (sec) 

Initial dip peak 

δ (104) 

Mental arithmetic (MA) 

(prefrontal cortex) 
2.17 4.03 0.57305 

Mental counting (MC) 

(prefrontal cortex) 
2.17 3.90 0.17864 

Puzzle solving (PS) 
(prefrontal cortex) 

2.30 4.22 0.32500 

Right-hand index finger tapping 

(RHFT) (motor cortex) 
1.98 3.58 0.89529 

Right-hand index finger poking 
(RHFP) (somatosensory cortex) 

- - - 

Checkerboard 

(visual cortex) 
2.17 3.90 0.64863 

motor cortex signals [46]. Schuldo and Chau achieved an average classification accuracy of 

71.7% for verbal fluency, stroop, and rest tasks from the prefrontal and parietal cortices [61]. 

It is noted that two brain regions and distinctive tasks were used in [46] and [61], whereas 

only the prefrontal cortex with similar mental tasks were examined in our work, yielding 

64.9%. 

For the initial dip classification, we investigated five different features (mean, slope, delta, 

skewness, kurtosis) and four different window sizes (0~1, 0~1.5, 0~2, and 0~2.5 sec). If using 

only two features, the combination of signal mean and delta provided the average 

classification accuracy of 57.5% using 0~2.5 sec window, which is the best. Recalling that 

several previous studies indicate that the initial dip peaks occur at around 2 sec and complete 

around 4 sec [1–18], the window size of 0~2.5 sec is the smallest size that have ever been 

used in fNIRS studies. Also, since only 64.9% with 7 sec delay was obtained from the HR 

case, 57.5% with 2.5 sec delay using initial dips is a significant improvement. We also 

observed that the initial dips of MA, MC and PS tasks occurred in the form of hypoxic-

ischemic type (i.e., decreased ΔHbO), which is consistent with the previous studies [27,28]. 

The average initial dip magnitude of MA tasks was the largest among the three tasks. 

Discussing individual subjects’ performance, Subs. 1 and 8 achieved a sufficiently higher 

classification accuracy required for BCI applications. Also, Subs. 3 and 7 showed a 
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classification accuracy higher than 60%. The overall classification accuracy of most subjects 

was greater than the chance level. 

It is also noted that the initial dip phenomenon did not occur in some trials. Therefore, the 

accuracy was evaluated only for those HRs in which the initial dip appeared. Several factors 

can be discussed for this issue, for example, caffeine reduces the possibility of detection of 

initial dip [62,63]. Also, variation of classification accuracy among subjects can be due to 

individual differences [64]. 

The parameters of the initial dips detected from the prefrontal cortex were compared with 

those of motor/somatosensory, and visual cortices, see Table 6. This shows that the vector 

phase analysis with a threshold circle can successfully detect initial dips in various brain 

regions. However, in the case of somatosensory, the initial dip was not clearly identified. 

When performing averaging, the parametric values were indistinctive, which is consistent 

with [36]. The initial dips in most brain regions were found peaking during approximately 2-

2.5 sec, which is in line with the previous fNIRS and fMRI studies [1–18, 65]. The 

completion time of initial dip period varies from 3.5 to 4.5 sec. The magnitudes were also 

varied in different brain regions. Therefore, a further investigation is needed to fully 

investigate optimal features to distinguish the initial dips for different brain regions. 

The following limitations of this study are discussed as follows. In this work, only HbO 

signal was investigated for examining the signal mean, delta, signal slope, skewness, and 

kurtosis. Therefore, other features including HbR, COE, and HbT should be investigated for 

further improvement of initial dip classification accuracy. The second limitation of our study 

is the insufficient number of subjects. The results would be more acceptable if using a large 

number than eight. The third is that only a linear classifier (LDA) was used in this work. A 

more advanced classifier can improve the classification accuracy. 

5. Conclusions 

In this paper, a systematic method for using initial dips appearing in fNIRS signals upon brain 

activities for BCI applications was demonstrated. Three mental tasks including mental 

arithmetic, mental counting, and puzzle solving tasks in association with the prefrontal cortex 

were performed. The vector-based phase analysis method with a peak HbO value obtained 

from the resting period were used in detecting the initial dips occurrence for the three mental 

tasks. While the average classification accuracy of 64.9% after 7 sec was obtained by using 

the conventional hemodynamic response method, the proposed method has achieved 57.5% 

after 2.5 sec by using the initial dip parameters for three classes. The results are encouraging 

and show a great potential in reduction of window size of fNIRS-based BCI within 0~2.5 sec, 

resulting in a significant temporal resolution improvement. 
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